Landslide Susceptibility Mapping Using Artificial Neural Network in the Urban Area of Senise and San Costantino Albanese (Basilicata, Southern Italy)
نویسندگان
چکیده
Landslides are significant natural hazards in many areas of the world. Mapping the areas that are susceptible to landslides is essential for a wise territorial approach and should become a standard tool to support land-use management. A landslide susceptibility map indicates landslide-prone areas by considering the predisposing factors of slope failures in the past. In the presented work, we evaluate the landslide susceptibility of the urban area of Senise and San Costantino Albanese towns (Basilicata, southern Italy) using an Artificial Neural Network (ANN). In order, this method has required the definition of appropriate thematic layers, which parameterize the area under study. To evaluate and validate landslide susceptibility, the landslides have been randomly divided into two groups, each representing the 50% of the total area subject to instability. The results of this research show that most of the investigated area is characterized by a high landslide hazard.
منابع مشابه
Comparing Bivariate and Multivariate Methods in Landslide Sustainability Mapping: A Case Study of Chelchay Watershed
1- INTRODUCTION In the last decades, due to human interventions and the effect of natural factors, the occurrence of landslide increased especially in the north of Iran, where the amount of rainfall is suitable for the landslide occurrence. In order to manage and mitigate the damages caused by landslide, the potential landslide-prone areas should be identified. In landslide susceptibili...
متن کاملLandslide Susceptibility Mapping Using Fusion Models of Frequency Ratio (FR) and Analytical Hierarchy Process (AHP)
Landslide susceptibility zonation mapping is necessary in urban and rural development planning. So far different methods are presented for Landslide susceptibility zonation. In this study, using statistical method of Frequency ratio and Analytical Hierarchy Process (AHP) based on paired comparison and intervention based such as slope, aspect, altitude, geology, land use, Normalized vegetatio...
متن کاملپهنهبندی خطر زمینلغزش با استفاده از روش آماری رگرسیون لجستیک در حوضه آبریز لواسانات
18 - Ayalew. L. Yamagishi. H. Marui. H & Kanno. T. (2005). "Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications.", Engineering Geology 81. (2005). 432– 445. 19 - Ayalew,l. and Yamagishi, H. (2005):The application of GIS –based logistic regression for landslide susceptibility mapping in the Kakuda-Yaahiko M...
متن کاملApplication of Artificial Neural Network in Study Phenomenon of Landslide and Risk Modeling using Geographic Information System (GIS), Case Study: Alamoot Rood Watershed
One of the natural disasters that occurs in abundance in Iran, due to the geological structure, morphological and seismic conditions, and damages the lives and property of people is a landslide. Roodbar Alamoot watershed in the east of Qazvin province is a mountainous region with a high potential for occurrence of landslides. Because of their active status, there is also a growing trend of...
متن کاملA GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses
Landslide-susceptibility mapping is one of the most critical issues in Malaysia. These landslides can be systematically assessed and mapped through a traditional mapping framework that uses geoinformation technologies (GIT). The main purpose of this paper is to investigate the possible application of an artificial neural network model and its cross-application of weights at three study areas in...
متن کامل